Gene amplification and microsatellite instability induced in tumorigenic human bronchial epithelial cells by alpha particles and heavy ions.

نویسندگان

  • C Q Piao
  • T K Hei
چکیده

Gene amplification and microsatellite alteration are useful markers of genomic instability in tumor and transformed cell lines. It has been suggested that genomic instability contributes to the progression of tumorigenesis by accumulating genetic changes. In this study, amplification of the carbamyl-P-synthetase, aspartate transcarbamylase, dihydro-orotase (CAD) gene in transformed and tumorigenic human bronchial epithelial (BEP2D) cells induced by either alpha particles or (56)Fe ions was assessed by measuring resistance to N-(phosphonacetyl)-l-aspartate (PALA). In addition, alterations of microsatellite loci located on chromosomes 3p and 18q were analyzed in a series of primary and secondary tumor cell lines generated in nude mice. The frequency of PALA-resistant colonies was 1-3 x 10(-3) in tumor cell lines, 5-8 x 10(-5) in transformed cells prior to inoculation into nude mice, and less than 10(-7) in control BEP2D cells. Microsatellite alterations were detected in all 11 tumor cell lines examined at the following loci: D18S34, D18S363, D18S877, D3S1038 and D3S1607. No significant difference in either PALA resistance or microsatellite instability was found in tumor cell lines that were induced by alpha particles compared to those induced by (56)Fe ions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of radiation-induced neoplastic transformation of human bronchial epithelial cells.

Carcinogenesis is a multistage process with sequences of genetic events that govern the phenotypic expression of a series of transformation steps that lead to the development of metastatic cancer. To better understand the mechanisms involved in human bronchial carcinogenesis induced by alpha particles from radon, we have developed a model of neoplastic transformation based on human papillomavir...

متن کامل

Down-regulation of Betaig-h3 gene is involved in the tumorigenesis in human bronchial epithelial cells induced by heavy-ion radiation.

High-energy (HZE) heavy ions, when compared to low-LET radiation, are highly effective in inducing gene mutation, chromosomal aberrations and neoplastic transformation. However, the underlying molecular mechanisms are not clearly understood. We have recently shown that the down-regulation of Betaig-h3 expression is causally linked to the tumorigenic phenotype of papillomavirus-immortalized huma...

متن کامل

Pii: S0273-1177(01)00009-6

Carcinogenesis is a multi-stage process with sequence of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer. In the present study, immortalized human bronchial (BEP2D) and breast (MCF-1 OF) cells were irradiated with graded doses of either 150 keV/ktm alpha particles or 1 GeV/nucleon SrFe ions. Transformed cells...

متن کامل

Fine urban atmospheric particulate matter modulates inflammatory gene and protein expression in human bronchial epithelial cells.

Ambient particulate matter (PM) is known to induce inflammation in the respiratory tract of exposed subjects. The aim of the present study was to detect, in bronchial epithelial cells, candidate inflammatory genes exhibiting transcriptional modifications following urban PM2.5 exposure. Paris urban PM2.5 sampled either at a curbside or a background station in winter and in summer was tested in c...

متن کامل

Cadmium Induced Cell Apoptosis, DNA Damage, Decreased DNA Repair Capacity, and Genomic Instability during Malignant Transformation of Human Bronchial Epithelial Cells

Cadmium and its compounds are well-known human carcinogens, but the mechanisms underlying the carcinogenesis are not entirely understood. Our study was designed to elucidate the mechanisms of DNA damage in cadmium-induced malignant transformation of human bronchial epithelial cells. We analyzed cell cycle, apoptosis, DNA damage, gene expression, genomic instability, and the sequence of exons in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Radiation research

دوره 155 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2001